Search results for "Solution-state NMR"

showing 3 items of 3 documents

Methionine in a protein hydrophobic core drives tight interactions required for assembly of spider silk

2019

Web spiders connect silk proteins, so-called spidroins, into fibers of extraordinary toughness. The spidroin N-terminal domain (NTD) plays a pivotal role in this process: it polymerizes spidroins through a complex mechanism of dimerization. Here we analyze sequences of spidroin NTDs and find an unusually high content of the amino acid methionine. We simultaneously mutate all methionines present in the hydrophobic core of a spidroin NTD from a nursery web spider’s dragline silk to leucine. The mutated NTD is strongly stabilized and folds at the theoretical speed limit. The structure of the mutant is preserved, yet its ability to dimerize is substantially impaired. We find that side chains of…

congenital hereditary and neonatal diseases and abnormalitiesProtein Foldinggenetic structuresProtein ConformationScienceSilkmacromolecular substancesCircular dichroismcomplex mixturesArticleMethionineddc:590ddc:570AnimalsAmino Acid Sequencelcsh:ScienceFluorescence spectroscopySequence Homology Amino AcidfungiQtechnology industry and agricultureSpidersSpectrometry FluorescenceMutationThermodynamicslcsh:QProtein MultimerizationFibroinsSolution-state NMRHydrophobic and Hydrophilic InteractionsAlgorithmsNature Communications
researchProduct

Hyper-CEST NMR of metal organic polyhedral cages reveals hidden diastereomers with diverse guest exchange kinetics.

2022

AbstractGuest capture and release are important properties of self-assembling nanostructures. Over time, a significant fraction of guests might engage in short-lived states with different symmetry and stereoselectivity and transit frequently between multiple environments, thereby escaping common spectroscopy techniques. Here, we investigate the cavity of an iron-based metal organic polyhedron (Fe-MOP) using spin-hyperpolarized 129Xe Chemical Exchange Saturation Transfer (hyper-CEST) NMR. We report strong signals unknown from previous studies that persist under different perturbations. On-the-fly delivery of hyperpolarized gas yields CEST signatures that reflect different Xe exchange kinetic…

MultidisciplinaryMagnetic Resonance SpectroscopyChemical physicsPhysicsGeneral Physics and AstronomyGeneral ChemistrySelf-assemblyorganometalliyhdisteetMagnetic Resonance ImagingGeneral Biochemistry Genetics and Molecular BiologyKineticsnanorakenteetOrganometallic chemistryMetalssupramolekulaarinen kemiaNMR-spektroskopiaSolution-state NMRMolecular self-assemblyNature communications
researchProduct

Zero-field nuclear magnetic resonance of chemically exchanging systems.

2019

Zero- to ultralow-field (ZULF) nuclear magnetic resonance (NMR) is an emerging tool for precision chemical analysis. In this work, we study dynamic processes and investigate the influence of chemical exchange on ZULF NMR J-spectra. We develop a computational approach that allows quantitative calculation of J-spectra in the presence of chemical exchange and apply it to study aqueous solutions of [15N]ammonium (15N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm{H}}_4^ +$$\end{document}H4+) as a model syst…

0301 basic medicineReaction kinetics and dynamicsSciencePhysics::Medical PhysicsGeneral Physics and AstronomyModel system02 engineering and technologyGeneral Biochemistry Genetics and Molecular BiologyArticle03 medical and health sciencesNuclear magnetic resonanceZero fieldHyperpolarization (physics)lcsh:ScienceDissolutionQuantitative Biology::Biomolecules3403 Macromolecular and Materials ChemistryMultidisciplinaryAqueous solution34 Chemical SciencesChemical exchangeQ500Diagnostic markersGeneral ChemistryNuclear magnetic resonance spectroscopy021001 nanoscience & nanotechnologyequipment and supplies030104 developmental biologylcsh:Qddc:5000210 nano-technologyhuman activitiesSolution-state NMR51 Physical Sciences
researchProduct